Настройка усилителя мощности ланзар - принципиальная схема усилителя мощности, описание принципиальной схемы, рекомендации по сборке и регулировке. Настройка и регулировка узч Регулировка тока покоя транзисторов выходного унч каскада

Конечно, охватить все случаи, встречающиеся в практике ремонта, не представляется возможным, однако, если следовать определенному алгоритму, то в подавляющем большинстве случаев удается восстановить работоспособность устройства за вполне приемлемое время. Данный алгоритм был выработан мною по опыту ремонта около полусотни различных УМЗЧ, от простейших, на несколько ватт или десятков ватт, до концертных «монстров» по 1…2 кВт на канал, большинство из которых поступало на ремонт без принципиальных схем .

Главной задачей ремонта любого УМЗЧ является локализация вышедшего из строя элемента, повлекшего за собой неработоспособность как всей схемы, так и выход из строя других каскадов. Поскольку в электротехнике бывает всего 2 типа дефектов:

  1. Наличие контакта там, где его быть не должно;
  2. Отсутствие контакта там, где он должен быть,

то «сверхзадачей» ремонта является нахождение пробитого или оборванного элемента. А для этого – отыскать тот каскад, где он находится. Дальше – «дело техники». Как говорят врачи: «Правильный диагноз - половина лечения».

Перечень оборудования и инструментов, необходимых (или по крайней мере крайне желательных) при ремонте:

  1. Отвертки, бокорезы, пассатижи, скальпель (нож), пинцет, лупа – т.е., минимальный обязательный набор обычного монтажного инструмента.
  2. Тестер (мультиметр).
  3. Осциллограф.
  4. Набор ламп накаливания на различные напряжения – от 220 В до 12 В (по 2 шт.).
  5. Низкочастотный генератор синусоидального напряжения (весьма желательно).
  6. Двухполярный регулируемый источник питания на 15…25(35) В с ограничением выходного тока (весьма желательно).
  7. Измеритель емкости и эквивалентного последовательного сопротивления (ESR ) конденсаторов (весьма желательно).
  8. И, наконец, самый главный инструмент – голова на плечах (обязательно!).

Рассмотрим данный алгоритм на примере ремонта гипотетического транзисторного УМЗЧ с биполярными транзисторами в выходных каскадах (рис.1), не слишком примитивного, но и не очень сложного. Такая схема является наиболее распространенной «классикой жанра». Функционально он состоит из следующих блоков и узлов:

  • двухполярный источник питания (не показан);
  • входной дифференциальный каскад на транзисторах VT 2, VT 5 с токовым зеркалом на транзисторах VT 1 и VT 4 в их коллекторных нагрузках и стабилизатором их эмиттерного тока на VT 3;
  • усилитель напряжения на VT 6 и VT 8 в каскодном включении, с нагрузкой в виде генератора тока на VT 7;
  • узел термостабилизации тока покоя на транзисторе VT 9;
  • узел защиты выходных транзисторов от перегрузки по току на транзисторах VT 10 и VT 11;
  • усилитель тока на комплементарных тройках транзисторов, включенных по схеме Дарлингтона в каждом плече (VT 12 VT 14 VT 16 и VT 13 VT 15 VT 17).
  1. Первым пунктом любого ремонта является внешний осмотр сабжа и его обнюхивание (!). Уже одно это позволяет иногда хотя бы предположить сущность дефекта. Если пахнет паленым – значит, что-то явно горело.
  2. Проверка наличия сетевого напряжения на входе: тупо перегорел сетевой предо­хранитель, разболталось крепление проводов сетевого шнура в вилке, обрыв в сетевом шнуре и т.п. Этап – банальнейший по своей сущности, но на котором ремонт заканчивается примерно в 10% случаев.
  3. Ищем схему на усилитель. В инструкции, в Интернете, у знакомых, друзей и т.п. К сожалению, все чаше и чаще в последнее время – безуспешно. Не нашли – тяжко вздыхаем, посыпаем голову пеплом и принимаемся за вырисовывание схемы по плате. Можно этот этап и пропустить. Если неважен результат. Но лучше не пропускать. Муторно, долго, противно, но – «Надо, Федя, надо…» ((С) «Операция «Ы»…).
  4. Вскрываем сабж и производим внешний осмотр его «потрохов». Применяем лупу, если нужно. Можно увидеть разрушенные корпуса п/п приборов, потемневшие, обуглившиеся или разрушенные резисторы, вздутые электролитические конденсаторы или потеки электролита из них, оборванные проводники, дорожки печатной платы и т.п. Если таковое найдено – это еще не повод для радости: разрушенные детали могут быть следствием выхода из строя какой-нибудь «блошки», которая визуально цела.
  5. Проверяем блок питания. Отпаиваем провода, идущие от БП к схеме (или отсоединяем разъем, если он есть) . Вынимаем сетевой предохранитель и к контактам его держателя подпаиваем лампу на 220 В (60…100 Вт). Она ограничит ток первичной обмотки трансформатора, равно как и токи во вторичных обмотках.

Включаем усилитель. Лампа должна мигнуть (на время зарядки конденсаторов фильтра) и погаснуть (допускается слабое свечение нити). Это значит, что К.З. по первичной обмотке сетевого трансформатора нет, как нет явного К.З. в его вторичных обмотках. Тестером на режиме переменного напряжения измеряем напряжение на первичной обмотке трансформатора и на лампе. Их сумма должна быть равна сетевому. Измеряем напряжения на вторичных обмотках. Они должны быть пропорциональными тому, что измерено фактически на первичной обмотке (относительно номинального). Лампу можно отключать, ставить предохранитель на место и включать усилитель прямо в сеть. Повторяем проверку напряжений на первичной и вторичной обмотках. Соотношение (пропорция) между ними должно быть таким же, как при измерении с лампой.

Лампа горит постоянно в полный накал – значит, имеем К.З. в первичной цепи: проверяем целостность изоляции проводов, идущих от сетевого разъема, тумблер питания, держатель предохранителя. Отпаиваем один из поводов, идущих на первичную обмотку трансформатора. Лампа погасла – скорее всего вышла из строя первичная обмотка (или межвитковое замыкание).

Лампа горит постоянно в неполный накал – скорее всего, дефект во вторичных обмотках или в подключенных к ним цепях. Отпаиваем по одному проводу, идущему от вторичных обмоток к выпрямителя(м). Не перепутать, Кулибин! Чтобы потом не было мучительно больно от неправильной подпайки назад (промар­кировать, например, с помощью кусочков липкой малярной ленты). Лампа погасла – значит, с трансформатором все в порядке. Горит – снова тяжко вздыхаем и либо ищем ему замену, либо перематываем.

6. Определились, что трансформатор в порядке, а дефект в выпрямителях или конденсаторах фильтра. Прозваниваем диоды (желательно отпаять под одному проводу идущему к их выводам, либо выпаять, если это интегральный мост) тестером в режиме омметра на минимальном пределе. Цифровые тестеры в этом режиме часто врут, поэтому желательно использовать стрелочный прибор. Лично я давно пользуюсь прозвонкой-«пищалкой» (рис. 2, 3). Диоды (мост) пробиты или оборваны – меняем. Целые – «звоним» конденсаторы фильтра. Перед измерением их надо разрядить (!!!) через 2-ваттный резистор сопротивлением около 100 Ом. Иначе можно сжечь тестер. Если конденсатор цел – при замыкании стрелка сначала отклоняется до максимума, а потом довольно медленно (по мере заряда конденсатора) «ползет» влево. Меняем подключение щупов. Стрелка сначала зашкаливает вправо (на конденсаторе остался заряд от предыдущего измерения) а потом опять ползет влево. Если есть измеритель емкости и ESR , то весьма желательно использовать его. Пробитые или оборванные конденсаторы меняем.


7. Выпрямители и конденсаторы целые, но на выходе блока питания стои́т стабилизатор напряжения? Не беда. Между выходом выпрямителя(ей) и входом(ами) стабилизатора(ов) включаем лампу(ы) (цепочку(и) ламп) на суммарное напряжение близкое к указанному на корпусе конденсатора фильтра. Лампа загорелась – дефект в стабилизаторе (если он интегральный), либо в цепи формирования опорного напряжения (если он на дискретных элементах), либо пробит конденсатор на его выходе. Пробитый регулирующий транзистор определяется прозваниванием его выводов (выпаять!).

8. С блоком питания все в порядке (напряжения на его выходе симметричные и номинальные)? Переходим к самому главному – собственно усилителю. Подбираем лампу (или цепочки ламп) на суммарное напряжение, не ниже номинального с выхода БП и через нее (них) подключаем плату усилителя. Причем, желательно к каждому из каналов по отдельности. Включаем. Загорелись обе лампы – пробиты оба плеча выходных каскадов. Только одна – одно из плеч. Хотя и не факт.

9. Лампы не горят или горит только одна из них. Значит, выходные каскады, скорее всего, целые. К выходу подключаем резистор на 10…20 Ом. Включаем. Лампы должны мигнуть (на плате обычно есть еще конденсаторы по питанию). Подаем на вход сигнал от генератора (регулятор усиления – на максимум). Лампы (обе!) зажглись. Значит, усилитель что-то усиливает, (хотя хрипит, фонит и т.п.) и дальнейший ремонт заключается в поиске элемента, выводящего его из режима. Об этом – ниже.

10. Для дальнейшей проверки лично я не использую штатный блок питания усилителя, а применяю 2-полярный стабилизированный БП с ограничением тока на уровне 0,5 А. Если такового нет – можно использовать и БП усилителя, подключенный, как было указано, через лампы накаливания. Только нужно тщательно изолировать их цоколи, чтобы случайно не вызвать КЗ и быть аккуратным, чтобы не разбить колбы. Но внешний БП – лучше. Заодно виден и потребляемый ток. Грамотно спроектированный УМЗЧ допускает колебания питающих напряжений в довольно больших пределах. Нам ведь не нужны при ремонте его супер-пупер параметры, достаточно просто работоспособности.

11. Итак, с БП всё в порядке. Переходим к плате усилителя (рис. 4). Перво-наперво надо локализовать каскад(ы) с пробитым(и)/оборванным(и) компонентом(ами). Для этого крайне желательно иметь осциллограф. Без него эффективность ремонта падает в разы. Хотя и с тестером можно тоже много чего сделать. Почти все измерения производятся без нагрузки (на холостом ходу). Допустим, что на выходе у нас «перекос» выходного напряжения от нескольких вольт до полного напряжения питания.

12. Для начала отключаем узел защиты, для чего выпаиваем из платы правые выводы диодов VD 6 и VD 7 (у меня в практике было три случая, когда причиной неработо­способности был выход из строя именно этого узла). Смотрим напряжение не выходе. Если нормализовалось (может быть остаточный перекос в несколько милливольт – это норма), прозваниваем VD 6, VD 7 и VT 10, VT 11. Могут быть обрывы и пробои пассивных элементов. Нашли пробитый элемент – меняем и восстанавливаем подключение диодов. На выходе ноль? Выходной сигнал (при подаче на вход сигнала от генератора) присутствует? Ремонт закончен.


Рис. 4.

Ничего с сигналом на выходе не изменилось? Оставляем диоды отключенными и идем дальше.

13. Выпаиваем из платы правый вывод резистора ООС (R 12 вместе с правым выводом C 6), а также левые выводы R 23 и R 24, которые соединяем проволочной пере­мычкой (показана на рис. 4 красным) и через дополнительный резистор (без нумерации, порядка 10 кОм) соединяем с общим проводом. Перемыкаем проволочной перемычкой (красный цвет) коллекторы VT 8 и VT 7, исключая конденсатор С8 и узел термостабилизации тока покоя. В итоге усилитель разъединяется на два самостоятельных узла (входной каскад с усилителем напряжения и каскад выходных повторителей), которые должны работать самостоятельно.

Смотрим, что имеем на выходе. Перекос напряжения остался? Значит, пробит(ы) транзистор(ы) «перекошенного» плеча. Выпаиваем, звоним, заменяем. Заодно проверяем и пассивные компоненты (резисторы). Наиболее частый вариант дефекта, однако должен заметить, что очень часто он является следствием выхода из строя какого-то элемента в предыдущих каскадах (включая узел защиты!). Поэтому последующие пункты все-таки желательно выполнить.

Перекоса нет? Значит, выходной каскад предположительно цел. На всякий случай подаем сигнал от генератора амплитудой 3…5 В в точку «Б» (соединения резисторов R 23 и R 24). На выходе должна быть синусоида с хорошо выраженной «ступенькой», верхняя и нижняя полуволны которой симметричны. Если они не симметричны – значит, «подгорел» (потерял параметры) какой-то из транзисторов плеча, где она ниже. Выпаиваем, звоним. Заодно проверяем и пассивные компоненты (резисторы).

Сигнала на выходе нет вообще? Значит, вылетели силовые транзисторы обоих плеч «насквозь». Печально, но придется выпаивать все и прозванивать с последующей заменой.

Не исключены и обрывы компонентов. Тут уж нужно включать «8-й инструмент». Проверяем, заменяем…

14. Добились симметричного повторения на выходе (со ступенькой) входного сигнала? Выходной каскад отремонтирован. А теперь нужно проверить работоспособность узла термостабилизации тока покоя (транзистор VT 9). Иногда наблюдается нарушение контакта движка переменного резистора R 22 с резистивной дорожкой. Если он включен в эмиттерной цепи, как показано на приведенной схеме, ничего страшного с выходным каскадом при этом произойти не может, т.к. в точке подключения базы VT 9 к делителю R 20– R 22 R 21 напряжение просто повышается, он приоткрывается больше и, соответственно, снижается падение напряжения между его коллектором и эмиттером. В выходном сигнале простоя появится ярко выраженная «ступенька».

Однако (очень даже нередко), подстроечный резистор ставится между коллектором и базой VT9. Крайне «дураконезащищенный» вариант! Тогда при потере контакта движка с резистивной дорожкой напряжение на базе VT9 снижается, он призакрывается и, соответственно, повышается падение напряжения между его коллектором и эмиттером, что ведет к резкому возрастанию тока покоя выходных транзисторов, их перегреву и, естественно, тепловому пробою. Еще более дурацкий вариант выполнения этого каскада – если база VT9 соединена только с движком переменного резистора. Тогда при потере контакта на ней может быть все, что угодно, с соответствующими последствиями для выходных каскадов.

Если есть возможность, сто́ит переставить R 22 в базо-эмиттерную цепь. Правда, при этом регулировка тока покоя станет выражено нелинейной от угла поворота движка, но IMHO это не такая уж и большая плата за надежность. Можно просто заменить транзистор VT 9 на другой, с обратным типом проводимости, если позволяет разводка дорожек на плате. На работу узла термостабилизации это никак не повлияет, т.к. он является двухполюсником и не зависит от типа проводимости транзистора.

Проверка этого каскада осложняется тем, что, как правило, соединения с коллекторами VT 8 и VT 7 сделаны печатными проводниками. Придется поднимать ножки резисторов и делать соединения проводочками (на рис. 4 показаны разрывы проводников). Между шинами положительного и отрицательного напряжений питания и, соответственно, коллектором и эмиттером VT 9 включаются резисторы примерно по 10 кОм (без нумерации, показаны красным) и замеряется падение напряжения на транзисторе VT 9 при вращении движка подстроечного резистора R 22. В зависимости от количества каскадов повторителей оно должно изменяться в пределах примерно 3…5 В (для «троек, как на схеме) или 2,5… 3,5 В (для «двоек»).

15. Вот и добрались мы до самого интересного, но и самого сложного – дифкаскада с усилителем напряжения. Они работают только совместно и разделить их на отдельные узлы принципиально невозможно.

Перемыкаем правый вывод резистора ООС R 12 с коллекторами VT 8 и VT 7 (точка « А », являющаяся теперь его «выходом»). Получаем «урезанный» (без выходных каскадов) маломощный ОУ, вполне работоспособный на холостом ходе (без нагрузки). Подаем на вход сигнал амплитудой от 0,01 до 1 В и смотрим, что будет в точке А . Если наблюдаем усиленный сигнал симметричной относительно земли формы, без искажений, значит данный каскад цел.

16. Сигнал резко снижен по амплитуде (мало усиление) – в первую очередь проверить емкость конденсатора(ов) С3 (С4, т.к. производители для экономии очень часто ставят только один полярный конденсатор на напряжение 50 В и больше, рассчитывая, что в обратной полярности он все равно будет работать, что не есть гут). При его подсыхании или пробое резко снижается коэффициент усиления. Если нет измерителя емкости – проверяем просто путем замены на заведомо исправный.

Сигнал перекошен – в первую очередь проверить емкость конденсаторов С5 и С9, шунтирующих шины питания предусилительной части после резисторов R17 и R19 (если эти RC-фильтры вообще есть, т.к. нередко они не ставятся).

На схеме приведены два распространенных варианта симметрирования нулевого уровня: резистором R 6 или R 7 (могут быть, конечно же, и другие), при нарушении контакта движка которых тоже может быть перекос выходного напряжения. Проверить вращением движка (хотя, если контакт нарушен «капитально», это может и не дать результата). Тогда попробовать перемкнуть пинцетом их крайние выводы с выводом движка.

Сигнал вообще отсутствует – смотрим, а есть ли он вообще на входе (обрыв R3 или С1, К.З. в R1, R2, С2 и т.п.). Только сначала нужно выпаять базу VT2, т.к. на ней сигнал будет очень маленьким и смотреть на правом выводе резистора R3. Конечно, входные цепи могут сильно отличаться от приведенных на рисунке – включать «8-й инструмент». Помогает.

17. Естественно, описать все возможные причинно-следственные варианты дефектов мало реально. Поэтому дальше просто изложу, как проверять узлы и компоненты данного каскада.

Стабилизаторы тока VT 3 и VT 7. В них возможны пробои или обрывы. Из платы выпаиваются коллекторы и замеряется ток между ними и землей. Естественно, сначала нужно рассчитать по напряжению на их базах и номиналам эмиттерных резисторов, каким он должен быть. (N . B .! В моей практике был случай самовозбуждения усилителя из-за чрезмерно большого номинала резистора R 10, поставленного изготовителем. Помогла подстройка его номинала на полностью работающем усилителе – без указанного выше разделения на каскады).

Аналогично можно проверить и транзистор VT 8: если перемкнуть коллектор-эмиттер транзистора VT 6, он также тупо превращается в генератор тока.

Транзисторы дифкаскада VT 2 V 5 T и токового зеркала VT 1 VT 4, а также VT 6 проверяются их прозвонкой после отпайки. Лучше замерить коэффициент усиления (если тестер – с такой функцией). Желательно подобрать с одинаковыми коэффициентами усиления.

18. Пару слов «не для протокола». Почему-то в подавляющем большинстве случаев в каждый последующий каскад ставят транзисторы все бо́льшей и бо́льшей мощности. В этой зависимости есть одно исключение: на транзисторах каскада усиления напряжения (VT 8 и VT 7) рассеивается в 3…4 раза бо́льшая мощность , чем на предрайверных VT 12 и VT 23 (!!!). Поэтому, если есть такая возможность, их сто́ит сразу же заменить на транзисторы средней мощности. Неплохим вариантом будет КТ940/КТ9115 или аналогичные импортные.

19. Довольно нередкими дефектами в моей практике были непропаи («холодная» пайка к дорожкам/«пятачкам» или плохое облуживание выводов перед пайкой) ножек компонентов и обломы выводов транзисторов (особенно в пластмассовом корпусе) непосред­ственно возле корпуса, которые очень трудно было увидеть визуально. Пошатать транзисторы, внимательно наблюдая за их выводами. В крайнем случае – выпаять и впаять заново.

Если проверили все активные компоненты, а дефект сохраняется – нужно (опять же, с тяжким вздохом), выпаять из платы хоть по одной ножке и проверить тестером номиналы пассивных компонентов. Нередки случаи обрывов постоянных резисторов без каких-либо внешних проявлений. Неэлектролитические конденса­торы, как правило, не пробиваются/обрываются, но всякое бывает…

20. Опять же, по опыту ремонта: если на плате видны потемневшие/обугленные резисторы, причем симметрично в обеих плечах, сто́ит пересчитать выделяемую на нем мощность. В житомирском усилителе «Dominator » производитель поставил в одном из каскадов резисторы по 0,25 Вт, которые регулярно горели (до меня было 3 ремонта). Когда я просчитал их необходимую мощность – чуть не упал со стула: оказалось, что на них должно рассеиваться по 3 (три!) ватта…

21. Наконец, все заработало… Восстанавливаем все «порушенные» соединения. Совет вроде бы и банальнейший, но сколько раз забываемый!!! Восстанавливаем в обратной последовательности и после каждого соединения проверяем усилитель на работоспособность. Нередко покаскадная проверка, вроде бы, показала, что все исправно, а после восстанов­ления соединений дефект опять «выползал». Последними подпаиваем диоды каскада токовой защиты.

22. Выставляем ток покоя. Между БП и платой усилителя включаем (если они были отключены ранее) «гирлянду» ламп накаливания на соответствующее суммарное напряжение. Подключаем к выходу УМЗЧ эквивалент нагрузки (резистор на 4 или 8 Ом). Движок подстроечного резистора R 22 устанавливаем в нижнее по схеме положение и на вход подаем сигнал от генератора частотой 10…20 кГц (!!!) такой амплитуды, чтобы на выходе выл сигнал не более 0,5…1 В. При таких уровне и частоте сигнала хорошо заметна «ступенька», которую трудно заметить на большом сигнале и малой частоте. Вращением движка R22 добиваемся ее устранения. При этом нити накала ламп должны немного светиться. Можно проконтролировать ток и амперметром, включив его параллельно каждой гирлянде ламп. Не сто́ит удивляться, если он будет заметно (но не более, чем в 1,5…2 раза в бо́льшую сторону) отличаться от того, что указано в рекомендациях по настройке – нам ведь важно не «соблюдение рекомендаций», а качество звучания! Как правило, в «рекомендациях» ток покоя значительно завышается, для гарантированного достижения запланированных параметров («по худшему»). Перемыкаем «гирлянды» перемычкой, повышаем уровень выходного сигнала до уровня 0,7 от максимального (когда начинается амплитудное ограничение выходного сигнала) и даем усилителю прогреться 20…30 минут. Этот режим является наиболее тяжелым для транзисторов выходного каскада – на них при этом рассеивается максимальная мощность. Если «ступенька» не появилась (при малом уровне сигнала), а ток покоя возрос не более, чем в 2 раза, настройку считаем законченной, иначе убираем «ступеньку» снова (как было указано выше).

23. Убираем все временные соединения (не забывать!!!), собираем усилитель окончательно, закрываем корпус и наливаем чарку, которую с чувством глубокого удовлетворения проделанной работой, выпиваем. А то работать не будет!

Конечно же, в рамках данной статьи не описаны нюансы ремонта усилителей с «экзотическими» каскадами, с ОУ на входе, с выходными транзисторами, включенными с ОЭ, с «двухэтажными» выходными каскадами и многое другое…

Поэтому ПРОДОЛЖЕНИЕ СЛЕДУЕТ

Другие статьи посвящённые постройке этого УНЧ.

Сборка.

Прямо по ходу монтажа я изготовил жгут или соединительный кабель. Называйте как угодно.

Так как верхнюю и нижнюю крышку нельзя протащить через трубу, то длину кабеля пришлось сделать избыточной. Это должно позволить легко добираться до любого элемента схемы без необходимости отпаивать какие-либо концы.


Жгут обвязал суровой навощённой нитью. Если такой нети нет, то можно изготовить её из обычной, просто протянув нить через свечку.


Светодиодный индикатор включения приклеил термоклеем.

Между микросхемами и радиатором оконечного усилителя проложил прокладку из одного слоя медицинского бинта, обильно смазанного термопастой КПТ- 8. Толщина бинта в сжатом состоянии около 0,1мм. Такого зазора вполне достаточно даже для напряжения 100 Вольт.



Так как вся конструкция собирается посредствам одной единственной шпильки, то для того, чтоб труба хорошо зафиксировалась в заглушках, я одел на выступ каждой заглушки по резиновому колечку (колечки отмечены стрелками).


Окончательная сборка трансформатора.

Я склеил половинки магнитопровода эпоксидной смолой и окончательно собрал трансформатор только после того, как УНЧ был постностью собран и проверен.

Если не склеивать половинки магнитопровода, то трансформатор, скорее всего, будет гудеть. Он может гудеть тише или громче, но слышно будет.

Если же придётся разбивать место склейки, например, для того, чтобы удлинить или укоротить обмотку, то от удара могут отслоиться некоторые пластины броневого сердечника. Если это произойдёт, то полностью избавиться от гудения будет очень сложно. Поэтому, склейку лучше производить в самом конце.


В заключение сборки трансформатора, можно намотать поверх катушки слой электрокартона или бумаги толщиной 0,1мм. На бумагу полезно нанести данные об обмотках. Если поверх бумаги намотать ещё и слой стекло- или лако-ткани, то трансформатор и вовсе приобретёт промышленный вид.

Наладка.

Во время пусконаладочных работ пришлось исправить только одну ошибку. Ошибка эта проявилась в виде небольшого фона в громкоговорителях и вызвана была неправильной разводкой земли на плате блока питания.


Фон появился из-за того, что мизерное напряжение пульсаций проникло на вход стабилизатора напряжения, а оттуда в предварительный усилитель.

На первоначальном варианте печатной платы выводы вторичных обмоток трансформатора, идущие к корпусу, были соединены вместе, что не правильно, так как все земли питания должны соединяться в одной точке, а не в двух.


Первоначальный вариант печатной платы.


А это уже доработанный вариант. При доработке пришлось разрезать одну дорожку поз.1 и добавить один контакт поз.2 для подключения обмотки трансформатора, питающей стабилизатор напряжения.


Кроме этого, в УНЧ всплыл ещё один дефект, который пока устранить не удалось. Это щелчки при включении и выключении УНЧ. Источником щелчков является блок регулировки громкости и тембра.

На картинке эпюра снятая на выходе блока регулировок тембра. Сам запуск и выключение микросхемы происходит очень плавно. И напряжение, и громкость звука увеличиваются в течение пары секунд. Но, на кривой спада и нарастания напряжения есть небольшая ступенька, похоже, вызванная какими-то переходными процессами в микросхеме. Этот перепад попадает на вход оконечников и вызывает щелчки.

Я пока сомневаюсь, что Philips разработал настолько кривую микросхему и грешу на конкретного производителя NXP Semiconductors или партию микросхем. Для начала попробую поискать аналогичную микросхему другого производителя на нашем радиорынке.

Как я уже писал, усилитель, питающийся от двухполярного источника, не создает щелчков при включении и выключении.

Городить же схему отключения громкоговорителей для усилителя, который в этом не нуждается, не хотелось бы.

Так что, если кто-то собирается использовать TDA1524A, то должен обратить внимание на это обстоятельство.

В остальном, сборка прошла без каких-либо осложнений.

Готовый усилитель.

На картинках изображён готовый усилитель.

  1. Щель охлаждения между верхней крышкой и радиатором.
  2. Индикатор включения.
  3. Выключатель сети.
  4. Громкость.
  5. Стереобаланс.
  6. Тембр ВЧ.
  7. Тембр НЧ.
  8. Гнездо подключения телефонов.
  9. Выключатель динамиков.

  1. Держатель предохранителя.
  2. Гнездо сетевого кабеля.
  3. Выход правого канала.
  4. Линейный вход.
  5. Выход левого канала.

  1. Радиатор.
  2. Единственная гайка, которую нужно открутить, чтобы разобрать УНЧ.

  1. Отверстия охлаждения.
  2. Ножки (пробки от каких-то аптечных пузырьков).

Измерения.

Температура окружающей среды – 20ºС.

Напряжение сети – 220В.

Синусоидальный сигнал – аппаратный генератор НЧ.

Музыкальный сигнал – Carlos Santana “Jingo: The Santana Collection”.

Осциллограмма, снятая на нагрузке УНЧ, при подключении к входу генератора НЧ.

Эффективная мощность, ограниченная пульсациями напряжения питания – 2х9 Ватт.


Осциллограмма, снятая на нагрузке, при подключении к входу музыкально сигнала.

Пиковая музыкальная мощность – 2х18 Ватт.


Температура радиатора при продолжительной работе на максимальной мощности, на частоте 1кГц, в режиме ограничения по питанию – 75ºС

Температура радиатора при продолжительном воспроизведении музыки на максимальной громкости ограниченной пульсациями напряжения питания – 65ºС.

Мелкие подробности.

Корпус усилителя оказался достаточно устойчивым. Устойчивость обеспечивается весом силового трансформатора и высоким коэффициентом трения резиновых ножек. При переключении тумблеров, корпус не отрывается от земли, хотя и слегка изменяет положение за счёт эластичности ножек.

Тока покоя каскада меняйте, в зависимости от вида каскада, либо ток базы транзистора, либо напряжение смещения на сетке лампы.

Для создания тока базы транзистора, включенного по схеме с общим эмиттером, используйте резистор, соединяющий базу либо с питающей шиной, либо с коллектором. Второе предпочтительнее с точки термостабилизации. Чем меньше сопротивление резистора, тем больше приоткрывающий ток базы, а , и ток покоя каскада. Существуют и другие, более совершенные схемы термостабилизации биполярных , предполагающие использование нескольких резисторов.

Для создания напряжения смещения лампы подключите ее управляющую сетку проводу через высокоомный резистор (его номинал менять не потребуется), а между катодом и общим проводом включите резистор, с помощью которого будет регулироваться напряжение смещения. Зашунтируйте его конденсатором (если он электролитический, включите его плюсом к катоду). Чем больше сопротивление катодного резистора, тем больше и запирающее напряжение на сетке, являющееся отрицательным относительно катода (но не общего провода), и, соответственно, меньше ток покоя каскада.

Если каскад используется для усиления по переменному току, подавайте на него входной сигнал через конденсатор с очень малой утечкой, чтобы не нарушить его режим по постоянному току. Выходной сигнал снимайте с нагрузки также через конденсатор.

Независимо от того, является ли каскад ламповым или транзисторным, вначале возьмите резистор, задающий ток покоя, большого сопротивления, чтобы этот ток был малым. Подайте на вход каскада через конденсатор такой сигнал, чтобы его искажения можно было легко обнаружить на слух или на экране осциллографа. Выходной сигнал снимите также через конденсатор, и подайте его, соответственно, на контрольный усилитель или осциллограф. Транзистор заранее установите на теплоотвод.

Последовательно с нагрузочным резистором включите миллиамперметр. Лишь после этого подайте на каскад питание. Ток покоя будет малым, а искажения - большими.

Всякий раз предварительно отключая питание каскада, ставьте в него резистор все меньшего и меньшего сопротивления. Ток покоя будет увеличиваться искажения - уменьшаться. Когда они перестанут падать, прекратите снижать сопротивление. Не пытайтесь узнать на практике, что будет при дальнейшем его уменьшении - поверьте наслово: усиление начнет падать, ток покоя возрастет до недопустимо большого значения, активный элемент может выйти из строя.

Если вас устраивает повышенное энергопотребление каскада, оставьте ток покоя на посинельном уровне, а если вы хотите ради экономичности пожертвовать качеством усиления, уменьшите ток покоя до желаемого уровня.

Ремонт усилителей звуковой частоты

Для ремонта УЗЧ необходимы следующие приборы: звуковой генератор типа ГЗ-102, ГЗ-118, осциллограф типа С1-78, С1-83 или подобный, измеритель нелинейных искажений С6-5, универсальный вольтметр типа В7-27 или ему подобный, эквиваленты нагрузок 4, 8, 16 Ом соответствующей мощности. В качестве эквивалентов можно использовать проволочные резисторы. Для ремонта высококачественных УЗЧ и последующей их регулировки желателен звуковой генератор с прецизионной формой сигнала, низкочастотный анализатор спектра и измеритель амплитудно-частотных характеристик.

Внешние проявления неисправностей усилителей следующие: периодическое пропадание звука или его полное отсутствие, слабый уровень выходного сигнала, большой уровень шума или фона, нелинейные искажения.

Неисправность, при которой появляются пропадание сигнала, треск и другие шумы в момент регулировки уровня сигнала, обычно связана с загрязнением подвижного контакта потенциометра регулировки. Дефект можно устранить разборкой регулятора и протиркой контакта. Если же неисправность устранить нельзя, заменяют потенциометр.

Алгоритмы поиска неисправностей УЗЧ составлены на основе последовательной проверки прохождения сигнала и анализе работоспособности каскадов усилителя (способ последовательных промежуточных измерений от входа к выходу). При диагностике УЗЧ способом исключений проверяется исправность каскадов от выхода по направлению ко входу. Для мощных УЗЧ предпочтителен второй способ. В усилителях малой мощности (до 5 Вт) и предварительных усилителях можно использовать оба способа поиска дефекта. Неисправный элемент в каскаде определяется измерением режимов и сравнением их с номинальными или проверкой сопротивлений и сопоставлением их с картой сопротивлений. Алгоритм поиска неисправности полного усилителя звуковой частоты (структурную схему см. на рис. 5.1) показан на рис. 5.9.


В случае неисправности одного канала стереофонического усилителя для локализации неисправного каскада можно рекомендовать запараллеливание через разделительный конденсатор входных цепей аналогичных каскадов.

Определение неисправности УЗЧ телевизора УЛПЦТ(И) реализуется по алгоритму (рис. 5.10, о), составленному на основе способа исключений. Аналогично получен алгоритм диагностики усилителя «Амфитон 002» (рис. 5.10, б). Неисправности УЗЧ в интегральном исполнении устанавливают, сравнивая напряжения на выводах микросхемы с номинальными. Несоответствие режимов указывает на дефектность микросхемы.


Контроль параметров УЗЧ осуществляется по функциональной схеме, приведенной на рис. 5.11. В этом случае номинальную выходную мощность на частоте 1000 Гц можно определить по выражению Р= U2/R«.

Амплитудно-частотная характеристика усилителя строится по точкам при изменении частоты входного напряжения усилителя с фиксацией выходного. Пределы регулировки тембра устанавливаются аналогичным образом.

Существенно упрощается процесс контроля АЧХ усилителя при наличии измерителя частотных характеристик типа XI -49 или ему подобного. Подключив усилитель к измерителю, на его экране наблюдают амплитудно-частотную характеристику.

Если коэффициент гармоник меньше 0,1 %, то его измерение сопряжено со значительными сложностями, так как промышленностью не выпускаются измерители нелинейных искажений с такой разрешающей способностью.

Правильно собранный УНЧ при соответствии режимов транзисторов диаграммам (см. рис. 63 - 68) и табл. 3 должен сразу нормально работать при подаче на вход сигнала от звукового генератора (ЗГ). Поэтому процесс настройки и регулировки усилителя НЧ сводится к проверке чувствительности, величины нелинейных искажений и частотной характеристики, а также к устранению выявленных при этом неисправностей, из-за которых тот или иной параметр не будет соответствовать норме.

Перед началом измерений целесообразно проверить ток потребления усилителем НЧ при отсутствии сигнала. Для этого вынимаются (выпаиваются) все транзисторы до блока УНЧ и замеряется ток. Например, для радиоприемников типа «Спидола» этот ток составляет 6 - 8 ма. Если же измеренный ток превышает эту величину, необходимо заменить транзистор первого каскада УНЧ на триод с большим коэффициентом усиления.

Далее к входу усилителя НЧ подключается ЗГ. Для приемников типа «Спидола» генератор подсоединяется к контакту 10 платы ПЧ-НЧ (см. рис. 2) или лепестку 1 потенциометра R30 (см. рис. 21), а земляной вывод ЗГ соединяется с контактом 7 платы ПЧ-НЧ или лепестком 3 потенциометра R30. Для остальных приемников звуковой генератор подключается к соответствующим выводам разъема «магнитофон» (Ш).

На выход приемника (рис. 69) параллельно звуковой катушке громкоговорителя подсоединяется ламповый вольтметр (ЛВ), осциллограф и измеритель нелинейных искажений (ИНИ). Для всех приемников эти приборы подключаются к гнездам внешнего громкоговорителя на колодке внешних соединений или к соответствующим контактам разъема «магнитофон» (Ш).

Ниже рассматривается порядок настройки и проверки УНЧ приемников типа «Спидола», «ВЭФ-12», «ВЭФ-201», и «ВЭФ-202». Данные по настройке и проверке УНЧ радиоприемников типа «Океан» сведены в табл. 4; «Спидола-207» и «Спидола-230» - в табл. 5. Настройка приемника «Меридиан-202», имеющего значительные отличия в электрической схеме, описывается в § 18.

Для проверки чувствительности УНЧ радиоприемников типа «Спидола», «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» на звуковом генераторе устанавливается частота 1000 гц и выходное напряжение не более 15 же. Регулятор громкости (РГ) ставится в положение максимальной громкости, а регулятор тембра («ВЭФ-12»,« ВЭФ-201» в «ВЭФ-202») - в положение широкой полосы (подъем высоких частот). При этом в громкоговорителе будет прослушиваться звук частотой 1000 гц, а выходной вольтметр покажет величину напряжения этой частоты. Регулятором выхода ЗГ устанавливается такое напряжение, при котором на выходе будет 0,56 в (1,1 в для «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202»). Это напряжение соответствует номинальной выходной мощности. Напряжение на выходе ЗГ и будет чувствительностью тракта НЧ.

Рис. 69. Структурная схема настройки и проверки УНЧ приемников 1,2 - вход блока УНЧ; 3,4 - гнездо внешнего громкоговорителя или разъема «магнитофон» (III)

Параллельно с проверкой чувствительности производится проверка нелинейных искажений тракта усиления НЧ по показанию ИНИ. Коэффициент нелинейных искажений не должен превышать величин, указанных в табл. 2, а изображение синусоиды на экране осциллографа должно быть без искажений. В случае сильных искажений необходимо заменить транзисторы Т9 и Т10. Причинами завышенных нелинейных искажений может быть также неправильная распайка выводов согласующего и выходного трансформаторов (сигнал с выхода УНЧ совпадает по фазе с сигналом на входе). В этом случае необходимо перебросить концы вторичной обмотки трансформаторов. Кроме того, причина может быть в неправильно подобранной емкости конденсатора С80 и С81 («Спидола»), С77 и С76 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и сопротивления резистора R36 («Спидола»), R42 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Таблица 4

Таблица 4

Таблица 5

Для проверки частотной характеристики УНЧ на звуковом генераторе устанавливается частота 1000 гц. Регулятором громкости на выходе УНЧ устанавливается напряжение 0,56 в («Спидола»), 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и в дальнейшем положение РГ не меняется. Напряжение на входе (мх) не должно превышать 12 мв («Спидола»), 10 мв («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). Затем на вход УНЧ подается сигнал частотой сначала 200 гц, а потом 4000 гц (полоса воспроизведения), и в обоих случаях регулятором выхода ЗГ устанавливается напряжение u2t которое соответствует напряжению на выходе 0,56 в (1,1 в). Неравномерность частотной характеристики N определяется из соотношения N = 20 lg (и2/u1) и не должна превышать норм, указанных в табл. 2. Коррекция частотной характеристики может быть осуществлена подбором емкости конденсатора С78 («Спидола»), С73 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Рис. 70. Структурная схема измерения входного сопротивления УНЧ приемников 1,2 - вход УНЧ; Нвх - сопротивление между точками 1 и 2

Иногда полезно знать величину входного сопротивления усилителя НЧ. Для этого собирается схема в соответствии с рис. 70.

Регулятор громкости устанавливается в положение максимальной громкости. От ЗГ на базу первого транзистора усилителя НЧ подается сигнал частотой 1000 гц через резистор R1 (2 - 3 ком) такой величины, чтобы напряжение на выходе было 0,56 в («Спидола») и 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). В этом случае ламповый вольтметр (ЛВ1) на выходе ЗГ покажет величину напряжения ut, a ЛB2 - и2 (вход УНЧ). Зная величину R1 и напряжения и2 и и1, можно подсчитать входное сопротивление усилителя (RBX) по формуле:

Rвх = u2 R1/uR1 = u2/(u1-u2) R1,

где uR1 == u1 - u2.

Величина резистора R1 подбирается так, чтобы щ та 2и2.

Если на выходе УНЧ напряжение, соответствующее номинальной выходной мощности, может быть получено при очень малых напряжениях на входе, то это будет говорить о близости усилителя к самовозбуждению. Причинами этого явления могут быть положительная обратная связь вместо отрицательной, обрыв в цепи обратной связи или неправильная распайка выводов согласующего (выходного) трансформатора. Этот режим характеризуется очень высоким коэффициентом нелинейных искажений и большой неравномерностью частотной характеристики.

После окончания регулировки УНЧ необходимо включить напряжение питания и проверить на слух работу усилителя НЧ при всех положениях регулятора громкости. При положении РГ, соответствующему минимальной громкости, на выходе приемника не должно быть никакого сигнала, а при максимальной громкости и подаче на вход УНЧ сигнала от ЗГ частотой 1000 гц и величиной 15 - 25 мв форма выходного напряжения должна быть неискаженной и без изломов, ярко светящихся точек и т. д.

Рис. 2. Электромонтажная схема платы ПЧ-НЧ радиоприемников «Спидола», «ВЭФ-Спидола» и «ВЭФ-Спидола-10» Резистор R42 установлен со стороны фольги

Рис. 6. Электромонтажная схема платы ПЧ-НЧ радиоприемников «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» Резисторы R10, R22 и R47 установлены со стороны фольги

Рис. 10. Электромонтажные схемы планок диапазонов 25 м - П1 31 м - П2, 41 м - ПЗ, 49 м - П4 (а),- 50 - 75 ж - П5 (б); СВ - П6(в) и ДВ - П7(г) радиоприемника «Океан» На планках диапазонов 25 м (П1) и 31 м (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой
Рис. 11. Электромонтажная схема платы блока УКВ радиоприемника «Океан»

Рис. 12. Электромонтажная схема платы ВЧ-ПЧ радиоприемника «Океан» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1. Точки 20 и 21 платы соединены перемычкой
Рис. 13. Электромонтажная схема платы УНЧ радиоприемника «Океан»

Рис. 15. Электромонтажные схемы планок диапазонов 2о м - П1, 31 м - П2, Им - ПЗ, 49 м - - П4(а); 50 - 75 м - 115(6) радиоприемника «Океан-203» На планках диапазонов 25 м (III) и 31 л (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой

Рис. 16. Электромонтажная схема платы блока УКВ радиоприемника «Океан-203»
Рис. 17. Электромонтажная схема платы ВЧ-Г1Ч радиоприемника «Океан-203» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1
Рис. 18. Электромонтажная схема платы УНЧ радиоприемника «Океан-203»

Рис. 20. Электромонтажная схема - платы блока УКВ радиоприемника «Океан-205»
Рис. 21. Электромонтажная схема платы УНЧ радиоприемника «Океан-205»
Рис. 22. Электромонтажная схема платы выпрямителя радиоприемника «Океан-205»

Рис. 23. Электромонтажная схема платы переключателей В2 - В5 радиоприемника «Океан-205»
Рис. 24. Электромонтажные схемы планок диапазонов 25 м - П1, 31 ж-П2, 41 м - ПЗ, 49 м - П4(а); 50-75 м - П5(6j; CB - П6(в); ДВ - П7(г) радиоприемника «Океан-205» На планках диапазонов 41 м (ЛЗ) и 49 Л1 (U4) вместо перемычки между точками А и В установлен дроссель (Др)

Рис. 25. Участок электромонтажной схемы платы ВЧ-ПЧ радиоприемника «Океан-205» с измененной печатью
Рис. 27. Электромонтажные схемы планок диапазонов 25 ж - П1, 31 М - .П2, 41 м - ПЗ, 49 м~П4(а); 52-75 м - 115(6); СВ - П6(в); ДВ - П7(г) радиоприемников «Спидола-207» и «Спидола-230»

Рис. 28. Электромонтажная схема платы ПЧ-НЧ радиоприемника «Спидола-207» Экраны транзисторов ТЗ - Т7 показаны условно. Положения подвижных ножей переключателей В1 - В5 не показаны