Схема подключения. Arduino и MOSFET

Для системы «Умный дом» основной задачей является управление бытовыми приборами с управляющего устройства будь то микроконтроллер типа Ардуино, или микрокомпьютер типа Raspberry PI или любое другое. Но сделать этого напрямую не получится, давайте разберемся как управлять нагрузкой 220 В с Ардуино.

Для управления цепями переменного тока средств микроконтроллера недостаточно по двум причинам:

1. На выходе микроконтроллера формируется сигнал постоянного напряжения.

2. Ток через пин микроконтроллера обычно ограничен величиной в 20-40 мА.

Мы имеем два варианта коммутации с помощью реле или с помощью симистора. Симистор может быть заменен двумя включенными встречно-параллельно тиристорами (это и есть внутренняя структура симистора). Давайте подробнее рассмотрим это.

Управление нагрузкой 220 В с помощью симистора и микроконтроллера

Внутренняя структура симистора изображена на картинке ниже.

Тиристор работает следующим образом: когда к тиристору приложено напряжение в прямом смещении (плюс к аноду, а минус к катоду) ток через него проходить не будет, пока вы не подадите управляющий импульс на управляющий электрод.

Я написал импульс не просто так. В отличие от транзистора тиристор является ПОЛУУПРАВЛЯЕМЫМ полупроводниковым ключом. Это значит, что при снятии управляющего сигнала ток через тиристор продолжит протекать, т.е. он останется открытым. Чтобы он закрылся нужно прервать ток в цепи или сменить полярность приложенного напряжения.

Это значит, что при удержании положительного импульса на управляющем электроде нужно тиристор в цепи переменного тока будет пропускать только положительную полуволну. Симистор может пропускать ток в обоих направлениях, но т.к. он состоит из двух тиристоров подключенных навстречу друг другу.

Управляющие импульсы по полярности для каждого из внутренних тиристоров должны соответствовать полярности соответствующей полуволны, только при выполнении такого условия через симистор будет протекать переменный ток. На практике такая схема реализована в распространенном .

Как я уже сказал микроконтроллер выдает сигнал только одной полярности, для того чтобы согласовать сигналу нужно использовать драйвер построенный на оптосимисторе.

Таким образом, сигнал включает внутренний светодиод оптопары, она открывает симистор, который и подает управляющий сигнал на силовой симистор T1. В качестве оптодрайвера может быть использован MOC3063 и подобные, например, на фото ниже изображен MOC3041.

Zero crossing circuit - цепь детектора перехода фазы через ноль. Нужна для реализации разного рода симисторных регуляторов на микроконтроллере.

Если схема и без оптодрайвера, где согласование организовано через диодный мост, но в ней, в отличие от предыдущего варианта нет гальванической развязки. Это значит, что при первом же скачке напряжения мост может пробить и высокое напряжение окажется на выводе микроконтроллера, а это плохо.

При включении/выключении мощной нагрузки, особенно индуктивного характера, типа двигателей и электромагнитов возникают всплески напряжения, поэтому параллельно всем полупроводниковым приборам нужно устанавливать снабберную RC цепь.

Реле и А рдуино

Для управления реле с А рдуино нужно использовать дополнительный транзистор для усиления тока.

Обратите внимание, использован биполярный транзистор обратной проводимости (NPN-структура), это может быть отечественный КТ315 (всеми любимый и всем известный). Диод нужен для гашения всплесков ЭДС самоиндукции в индуктивности, это нужно чтобы транзистор не вышел из строя от высокого приложенного напряжения. Почему это возникает, объяснит закон коммутации: "Ток в индуктивности не может измениться мгновенно".

А при закрытии транзистора (снятии управляющего импульса) энергии магнитного поля накопленной в катушке реле необходимо куда-то деваться, поэтому и устанавливают обратный диод. Еще раз отмечу, что диод подключен в ОБРАТНОМ направлении, т.е. катодом к плюсу, анодом к минусу.

Такую схему можно собрать своими руками, что значительно дешевле, плюс вы можете использовать , рассчитанное на любое постоянное напряжение.

Или купить готовый модуль или целый шилд с реле для Ардуино :

На фото изображен самодельный шилд, кстати, в нем использованы для усиления тока КТ315Г, а ниже вы видите такой же шилд заводского исполнения:

Заключение

Безопасное управление нагрузкой переменного тока подразумевает прежде всего вся описанная выше информация справедлива для любого микроконтроллера, а не только платы Ардуино .

Главная задача - обеспечить нужные напряжение и ток для управления симистором или реле и гальваническая развязка цепей управления и силовой цепи переменного тока.

Кроме безопасности для микроконтроллера, таким образом, вы подстраховываете себя, чтобы при обслуживании не получить электротравму. При работе с высоким напряжением нужно соблюдать все правила техники безопасности, соблюдать ПУЭ и ПТЭЭП.

Эти схемы можно использовать и . Симисторы и реле в таком случае выступают в роли промежуточного усилителя и согласователя сигналов. На мощных коммутационных приборах большие токи управления катушкой и зависят непосредственно от мощности контактора или пускателя.

Алексей Бартош

Платформа для любителей робототехники и автоматики славится своей модульной конструкцией и простотой работы. Порой я натыкаюсь на рекламу, где заявляют, что можно собрать своего робота, практически, не будучи знакомым с электроникой. Но это не совсем так.

При неверном подключении некоторых исполнительных устройств и механизмов вы можете сжечь порты ардуинки (о чем я уже рассказывал в статье про то, ). А если вы не знаете, как обращаться с цифровыми устройствами - в лучшем случае вам просто не удастся установить связь.

Я купил несколько модулей для ардуино, что делать дальше?

Чтобы узнать об особенностях подключения, напряжениях питания, логических уровнях и прочем нужно ознакомиться с даташитом на ваш модуль.

Datasheet или даташит - это техническая документация на изделие. Такую документацию можно скачать на любую микросхему или датчик. Обычно они есть на сайте производителя. Более того, в сети существуют специальные ресурсы, на которых собрана целая масса технической документации, одним из таких является http://www.alldatasheet.com/

Внимательно ознакомьтесь с информацией из даташита, но на что следует обратить внимание? Во-первых, у микросхемы, кроме основной части названия обычно присутствует переменная часть или приставка - чаще всего это одна или несколько букв.

Это свидетельствует о некоторых особенностях конкретной микросхемы, например о максимальной мощности, напряжениях питания и логических уровнях (если устройство цифровое), возможно о корпусе, в котором она исполнена и пр.

Если вы не нашли в даташите сведений о питании и лог. уровнях обратитесь в русскоязычные сообщества arduino, на их форумах обычно рассмотрены особенности всех распространенных модулей.

У ArduinoUno напряжение питания и логических уровней 5 В, если внешнее устройство работает в 3.3 В диапазоне - вам придется сформировать их, питание можно устроить с помощью LDO стабилизатора (линейных с низким падением, для стабилизации ему нужно не менее 1.3 вольт «лишнего напряжения при максимальном токе, против 2-х вольт на стабилизаторах 78xx серии, что позволяет получить 3.3 вольта от 4.5 вольт (трёх пальчиковых батареек).

В технической документации для цифровых датчиков и устройств также указываются и названия протоколов, по которым они «общаются» друг с другом. Это могут быть индивидуальные протоколы и стандартные, те же:

Ардуино работает с ними. Это облегчит вам задачу в поиске готовых библиотек и примеров кода.

Согласование и усиление сигналов

Вопросы о согласовании устройств и исполнительных механизмов с ардуиной довольно часто возникают у новичков. Мы рассмотрим часто встречающиеся:

1. Согласование цепей по напряжению.

2. Согласование мощности выходного пина и исполнительного устройства, иными словами усиление напряжения и/или тока.

Что делать если на моём модуле логические уровни 3.3 Вольта, а на ардуино 5 Вольт? Довольно просто использовать конвертер логически уровней. Его можно собрать из дискретных элементов, а можно приобрести готовый модуль на плате, к примеру такой:

Такой преобразователь двунаправленный, т.е. он понижает высокий уровень и повышает ответный низкий. LV(1,2,3,4) - площадки для подключения низкоуровневых сигналов, HV(1,2,3,4) - высоких уровней, HV и LV без цифр - это напряжения 5 и 3.3 Вольта, как и у источников преобразуемых сигналов, GND - земля или минусовой провод. В конкретном экземпляре есть 4 независимых канала.

Вероятность появления высокого потенциала на плате ардуино в этом случае крайне мала, это обеспечивается отсутствием электрического контакта, а связь осуществляется через оптический канал, т.е. с помощью света. Подробнее об этом вы можете узнать изучив фото- и оптоэлектронные приборы.

Если и произойдет большой скачок - то сгорит оптопара, на картинке это PC8171, но никак вы не перегрузите порты микроконтроллера.

Подключение мощных потребителей

Так как микроконтроллер может только УПРАВЛЯТЬ работой устройств, вы не можете подключить мощный потребитель к её порту. Примеры таких потребителей:

    Электродвигатели;

    Сервоприводы.

1. Подключение сервопривода

Основная задача сервопривода - это задать положение ротора подключенного к исполнительным механизмам, контролировать и изменять его с помощью малых усилий. То есть, вы, с помощью потенциометра, если сервопривод рассчитан на вращение в пределах половины оборота (180 градусов) или с помощью энкодера, если необходимо круговое вращение (360 градусов) можете управлять положением вала сервопривода (электродвигателя в нашем случае) произвольной мощности.

Многие любители робототехники используют ардуину в качестве основы своих роботов. Здесь сервоприводы нашли отличное применение. Их используют в качестве привода поворотных механизмов для камер, датчиков и механических рук. Радиомоделисты используют для привода поворота колес в моделях автомобилей. В промышленности используют большие приводы в ЧПУ станках и прочей автоматизации.

В любительских маленьких сервах плата с датчиком положения и электроникой встроена в корпус. Из них обычно выходит три провода:

    Красный - плюс питания, если привод мощный лучше подключать к внешнему источнику, а не к плате ардуино;

    Черный или коричневый - минус, по подключению также, как и плюс;

    Желтый или оранжевый - управляющий сигнал - его подают из цифрового пина микроконтроллера (digital out).

Для управления сервой предусмотрена специальная библиотека, обращение к ней объявляется в начале кода, командой "#include servo.h".

Подключение электродвигателя

Для привода в движение механизмов и регулировки скорости их вращения проще всего использовать ДПТ (щеточный двигатель постоянного тока с возбуждением от постоянных магнитов). Такие моторчики вы, наверняка, видели в радиоуправляемых машинках. Они легко реверсируются (включаются на вращение в нужном направлении) нужно просто сменить полярность. Не пытайтесь их подключить к пинам напрямую!

Лучше использовать транзистор. Подойдет , хоть прямой (pnp), хоть обратной (npn) проводимости. Полевые тоже подойдут, но при выборе конкретного убедитесь, работает ли его затвор с логическим уровнями?

В противном случае он не будет открываться полностью, либо вы сожжете цифровой выход микроконтроллера во время заряда затворной емкости - для них используют драйвер, простейший способ - раскачка сигнала через биполярный транзистор. Ниже приведена схема управления через .

Если между G и S не поставить резистора - тогда затвор (G) не будет притянут к земле и может самопроизвольно “гулять” от помех.

Как определить, что полевой транзистор пригоден для прямого управления с микроконтроллера смотрите ниже. В даташите найдите параметр Vgs, например для IRL540 все измерения и графики привязаны к Vgs=5v, даже такой параметр, как сопротивления открытого канала указан для этого напряжения между затвором и истоком.

Кроме щеточного ДПТ по такой же схеме можно подключить куллер от компьютера, хотя там безщеточный двигатель, обмотки которого управляются встроенным преобразователем плата которого расположена прямо в его корпусе.

Обороты этих двух типов двигателей легко регулировать изменяя питающее напряжение. Это можно сделать если базу транзистора подключить не в цифровому (digital output), а шим пину (~pwm), значение которого определяется функцией "analogWrite()".

Реле и соленоиды

Для коммутации цепей, где не нужно регулирование и частое переключение удобно использовать реле. Правильно подобрав подходящее, вы можете коммутировать любые токи и напряжения при минимальных потерях в проводимости и нагреве силовых линий.

Для этого нужно подать напряжение нужной на катушку реле. На схеме реле, его катушка рассчитана на управление 5-ю вольтами, силовые контакты могут коммутировать и пару вольт и сетевые 220 В.

    Привод замков дверей автомобиля;

    Электромагнитные клапана;

    Электромагнит в металлургическом производстве;

    Силовая установка пушки гаусса и прочее.

В любом случае типовая схема подключения катушек постоянного тока к микроконтроллеру или логике выглядит так:

Транзистор для усиления управляющего тока, диод подключен в обратном направлении для защиты выхода микроконтроллера от всплесков ЭДС самоиндукции.

Устройства ввода и датчики

Вы можете управлять своей системой с помощью кнопок, резисторов, энкодеров. Кнопкой вы можете подать сигнал на цифровой вход ардуины высокого (high/5V) или низкого (low/0V) уровня.

Для этого есть два варианта включения. Нужна нормально-разомкнутая кнопка без фиксации для некоторых целей нужен тумблер или кнопка с фиксацией - выбирайте сами в зависимости от ситуации. Чтобы подать единицу нужно первый контакт кнопки подключить к источнику питания, а второй к точке соединения резистора и входа микроконтроллера.

Когда кнопка нажата на сопротивлении падает напряжение питания, то есть высокий (high) уровень. Когда кнопка не нажата - тока в цепи нет, потенциал на резисторе низкий, на вход подается сигнал "Low/0V". Это состояние называется "пин подтянут к земле, а резистор "pull-down".

Если нужно, чтобы, при нажатии на кнопку, микроконтроллер получал 0 вместо 1, подключите по этой же схеме нормально-замкнутую кнопку или читайте дальше как это сделать с нормально-разомкнутой.

Чтобы давать микроконтроллеру команду нулевым сигналом схема немного изменяется. К напряжению питания подключается одна нога резистора, вторая к точке соединения нормально-разомкнутой кнопки и цифрового входа ардуины.

Когда кнопка отпущена все напряжение остается на ней, вход получает высокий уровень. Это состояние называется "пин подтянут к плюсу", а резистор "pull-up". Когда вы нажмете кнопку вы шунтируете (замыкаете) вход на землю.

Делитель напряжения и ввод сигнала с потенциометра и резистивных аналоговых

Делитель напряжения применяется для подключения переменных сопротивлений, таких как терморезисторы, фоторезисторы и прочее. За счет того, что один из резисторов постоянный, а второй переменный - можно наблюдать изменение напряжения в их средней точки, на картинке выше оно обозначено, как Ur.

Таким образом можно подключать различные аналоговые датчики резистивного типа и датчики которые под воздействием внешних сил изменяют свою проводимость. А также потенциометры.

На картинке ниже вы видите пример подключения таких элементов. Потенциометр можно подключать без дополнительного резистора, тогда в крайнем положении будет полное напряжение, однако в минимальном положении нужно обеспечить стабилизацию или ограничение тока - иначе будет .

Выводы

Чтобы без ошибок подключить любой модуль и дополнение к микроконтроллеру нужно знать основы электротехники, закон Ома, общие сведения об электромагнетизме, а также основы работы полупроводниковых приборов. На самом деле вы можете убедиться, что это всё гораздо проще сделать, чем слушать эти сложные слова. Пользуйтесь схемами из этой статьи в своих проектах!

Алексей Бартош

Транзистор - повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей - разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

    TO-92 - компактный, для небольших нагрузок

    TO-220AB - массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

    Коллектор (collector) - на него подаётся высокое напряжение, которым хочется управлять

    База (base) - через неё подаётся небольшой ток , чтобы разблокировать большой; база заземляется, чтобы заблокировать его

    Эмиттер (emitter) - через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель h fe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если h fe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор - это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative - это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive - с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения : ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

    Сток (drain) - на него подаётся высокое напряжение, которым хочется управлять

    Затвор (gate) - на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

    Исток (source) - через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток - она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R . Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер - транзистор - земля. Главное - не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь U d - это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае - это 100 мА. Допустим для используемого транзистора h fe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм - хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер - затвор - исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Мы рассмотрели работу с фоторезистором для управления LED. Однако, зачастую нужно управлять более мощной нагрузкой, такой как лампа накаливания, электродвигатель, электромагнит и т.п. Выходы Arduino не могут обеспечить питание столь мощной нагрузки и большого напряжения. К примеру в робототехнике, часто используются двигателя на 12В, 24В, 36В и т.п. К тому же выходной ток вывода Arduino ограничен как правило 40 мА.

Одним из способов управления мощной нагрузкой, является использование MOSFET-транзисторов. Это дает возможность подключать достаточно мощную нагрузку с напряжением питания по 40-50 и более вольт и токами в несколько ампер, скажем электрические двигатели, электромагниты, галогенки и так далее.

Схема подключения достаточно простая, как вы видите.

Если нагрузка индуктивная (электродвигатель, электромагнитный клапан и т.д.), то рекомендуется ставить защитный диод, который защитит мосфет от напряжения самоиндукции. Если вы управляете электродвигателем при помощи ШИМ без защитного диода, то могут возникнуть такие проблемы, как нагрев мосфета или его вылет, медленно будет крутиться ваш двигатель, возникнут потери мощности и т.д. Так что всегда ставьте защитный диод для индуктивной нагрузки. Встроенный в мосфет защитный диод в большинстве случаев не спасает от индуктивных выбросов!

Если нагрузка у вас активная – светодиод, галогенная лампа, нагревательный элемент и т.д., то в этом случае диод не нужен.

В цепь затвора желательно поставить Pull-Down резистор (стягивающий резистор между затвором и истоком ). Он необходим, чтобы гарантированно удерживать низкий уровень на затворе мосфета при отсутствии сигнала высокого уровня от Ардуино. Это исключает самопроизвольное включение транзистора.

При подборе мосфета, для того, чтобы он напрямую открывался от микроконтроллера и не нужно было ставить перед ним биполярных транзисторов и драйверов, обращайте внимание на параметр Gate Threshold, который должен быть примерно от 1 до 4 Вольт. Часто такие транзисторы помечаются как Logic Level .

Давайте к примеру рассмотрим транзистор: IRL3705N N-Channel Hexfet Power MOSFET.

Данный транзистор способен выдерживать продолжительный ток до 89А (естественно с теплоотводом) и открывается при напряжении затвора 1В (параметр V GS(th)). Поэтому, мы можем напрямую подсоединить данный транзистор к ногам Arduino. Когда транзистор полностью открыт, сопротивление Исток-Сток всего 0.01 Ом (параметр R DS(on) ) . Поэтому, если к нему подключить электрический мотор 12В, 10А на транзисторе падение напряжения будет всего лишь 0.1В, а рассеиваемая мощность 1 Ватт.

Если использовать ШИМ-выход контроллера, мы можем управлять мощностью (а значит и скоростью вращения) мотора.

Научно-технические

Подключение мосфета к Ардуино

"Научно-технические статьи" - подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов , научные разработки в области радиотехники и электроники , статьи по истории развития радиотехники и электроники , новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники , обзоры выставок радиоэлектронной тематики.

Программируемый микроконтроллер Arduino идеально подходит для создания нестандартных устройств. А имеющиеся в избытке готовые модули, расширения и скетчи значительно облегчают задачу.

Однако, всегда находятся проекты, в которых к Arduino необходимо подключить мощный узел или устройство. Микроконтроллер будет отвечать за логику работы, а узел или устройство – выполнять простую работу.

С одной стороны – ничего сложного, с другой – Arduino обеспечивает на выходе только небольшой ток и напряжение (U – не более 5В, I – 40 мА). Значит. Мощную нагрузку нужно подключать через специальный "усилитель". В качестве последнего могут выступать специализированные транзисторы Дарлинтона, биполярные, полевые (мосфеты), реле (механические или на оптопаре) и т.п.

Мы уже подробно рассмотрели основные варианты . Здесь же детально осветим вариант с полевым транзистором.

Нагрузка через мосфет к Ардуино - схема

В первую очередь следует определиться с тем, какие устройства или типы нагрузок лучше всего подключать через полевики:

  • Двигатели (шаговые или постоянного тока);
  • Нагревательные приборы;
  • Мощные лампы;
  • Соленоиды;
  • И т.п.

Не стоит через мосфеты подключать "быстрые" приборы (работающие на высоких частотах или часто включаемые/отключаемые) или сеть с переменным током (для этой задачи лучше всего использовать реле).

Во-первых, полевой транзистор будет греться, во-вторых, его реакция определённо "медленная" для ВЧ техники.

Типовая схема включения нагрузки будет иметь такой вид.

Рис. 1. Типовая схема включения нагрузки

Или такой (для лучшего понимания принципа работы).

Рис. 2. Вариант схемы включения нагрузки

Резистор 3к на затворе – это ограничитель (подстроечное сопротивление). А 10к – это своего рода предохранитель от перехода мосфета в Z-режим (исключается эффект "дребезжания" на малых токах управления).

Если нагрузка обладает большой индуктивностью (актуально, например, для двигателей), то следует использовать дополнительный диод (несмотря на то, что в большинстве мосфетов он уже встроен, не помещает дополнительная защита).

Схема принимает следующий вид.

Рис. 3. Схема устройства

На случай исключения обратного пробоя и выхода из строя платы микроконтроллера, можно реализовать гальванический разрыв цепи через оптрон.

Например, так.

Рис. 4. Гальванический разрыв цепи через оптрон

Если логика работы предполагает быструю реакцию мосфета на сигналы с ШИМ-пина (PWM), то выходной сигнал лучше всего предварительно усилить биполярными транзисторами, например, так.

Рис. 5. Вариант схемы устройства

На случай острой необходимости управления сетью с переменным током 220В с ШИМ-выхода можно воспользоваться следующей схемой.

Рис. 6. Вариант схемы устройства

Она подойдёт на роль "автоматического диммера" с продвинутыми настройками.

При работе с полевыми транзисторами стоит проявлять особую осторожность, они очень боятся статического электричества. Поэтому необходимо предпринять все меры, чтобы снять статический заряд в процессе работ.

Для этого понадобится сопроводительная документация (даташит) к выбранному полевому транзистору. Здесь стоит отметить, что подбирать мосфет необходимо из серий, помеченных как "Logic Level", они разрабатываются специально для работы с микроконтроллерами.

Из даташита необходимо уточнить график зависимости параметров транзистора, например, для IRF630.

Рис. 7. График зависимости параметров транзистора

При напряжении на затворе в 5 Вольт (см. линия в центре с подписью 5V) и токе в цепи (вертикальная ось координат) 5 А, падение напряжения составит около 2В (горизонтальная ось координат).

То есть сопротивление транзистора можно рассчитать по закону Ома как 2/8=0,25 (Ом).